If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-11x^2=0
a = -11; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-11)·1
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*-11}=\frac{0-2\sqrt{11}}{-22} =-\frac{2\sqrt{11}}{-22} =-\frac{\sqrt{11}}{-11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*-11}=\frac{0+2\sqrt{11}}{-22} =\frac{2\sqrt{11}}{-22} =\frac{\sqrt{11}}{-11} $
| 3y=2(2+2y)3y=4+4y-y=4y= | | 0.9(x+70)+0.9x=144 | | (-7-2x)^2=0 | | -7+m=123 | | 7+10m-1=9m+62-6m | | 4(4x)+2(x)=7216x+2x=7218x=72x= | | x^2-24x-50=0 | | 7+10m-1=9m+62-9m | | (2x+8)+(3x+16)+(3x+16)+(4x-18)+(3x-17)+(2x+25)=180 | | X^2(-7-3x)^2=7 | | 1/2(4x-6)=29 | | (y-4)*(y-4)=26 | | 6(2n+1)-42=0 | | 2(3m-2)+10=6 | | 4x+4x+4=192 | | 8x+4=6x+9 | | (3x+5)-(4x+8)=9 | | 3-6x+1=-2x-9 | | 6(2p-1)-5=23 | | -4x-7-3+4=25 | | 3x^2=6x-3=0 | | 5(2z-1)+4=29 | | x+(2x-7)/2-(3x+1)/5=5-(x+6)/2 | | 3=0.03t3+0.05t2 | | x=-x^2+28 | | 3(y+5)-4=24 | | 6x^2+22=0 | | 6*2n=96 | | 17+6x/2=12+9-15+4x | | 2(x+2)=3x-5 | | 4x-35=5x-17+4x-7 | | 10/4y-3=5 |